
Multicasting in Quantum Switching Networks
Manish Kumar Shukla and A. Yavuz Oruç

Abstract—In this paper, we present a quantum multicasting network, called a generalized quantum connector (n-GQC), which can be

used to multicast quantum information from n inputs to n outputs. This network is recursively constructed using n=2-GQCs and

consists of Oðn log2 nÞ quantum gates. The key component of the n-GQC is another network, called an n-quantum concentrator

(n-QC). This concentrator is also an n� n quantum network, and can route arbitrary quantum states on any m of its inputs to its top

m outputs, for any m; 1 � m � n. Its quantum gate complexity is Oðn lognÞ. The quantum gate-level depths of n-QC and n-GQC are

Oðlog2 nÞ and Oðlog3 nÞ, respectively. Both n-QC and n-GQC are based on the classical self-routing concentrators and generalized

connection networks given by Lee and Oruç [1]. While these networks work for multicasting classical packets, they cannot be used to

multicast quantum packets as they employ balancer switches with both forward and backward propagation of packets. We introduce a

quantum balancer switch that works using a forward propagation of packets only, thereby facilitating the n-QC and n-GQC designs

presented in the paper.

Index Terms—Generalized quantum connector, quantum concentrator, quantum switching, quantum information, switching networks,

quantum multicasting.
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1 INTRODUCTION

QUANTUM information science is an emerging area of
research that seeks to use special properties of quantum

systems such as quantum parallelism and entanglement to
develop efficient solutions for classically intractable pro-
blems. Research in this area has been spurred by some key
algorithms that have shown that quantum systems could
be used to solve some important exponentially complex
problems with speedups that are impossible in classical
computing. Examples include Shor’s polynomial time
algorithm [2] for finding the prime factors of a composite
number and Grover’s search algorithm [3] that can find an
element in an unstructured database containing n elements
in Oð ffiffiffinp Þ time.

Building quantum systems would require means to
transport quantum information from one place to another.
Several architectures are being considered to build quantum
wires over which quantum data can be transmitted. Primary
examples are quantum swapping and teleportation-based
architectures for building quantum wires as described in [4].
For n quantum sources that wish to communicate with one
another by sharing quantum information, Oðn2Þ quantum
wires are needed. This complexity can be greatly reduced
using advanced switching architectures. The relationship
between quantum circuits and permutation maps was
identified in [5] and it was shown that any permutation
map can be realized by a quantum circuit consisting of six
layers of controlled-not gates. However, this result requires
a different quantum circuit for each permutation map to be
realized. It was also shown in [5] that the classical

components of a qubit can be replicated using controlled-
not gates. This copying was used in [6] to implement
multicasting of qubits using directed graph representations
of multicast maps. However, this approach also requires
that each multicast assignment be realized by a separate
quantum circuit.

Shukla et. al. [7], [8] presented a self-routing Oðn lognÞ
quantum baseline network that can be used to permute
quantum packets from n inputs to n outputs. They showed
that this network can also be used to resolve internal
blocking when transmitting classical packets by creating a
superposition of packets whenever they contend for the
same wire in the network. However, this network can realize
only nn=2 permutations between n inputs and n outputs out
of n total possible permutations. Recently, Cheng and Wang
[9] proposed a quantum merge sorting-based switching
network that can realize all n permutations using Oðn log2 nÞ
quantum gates. More recently, Sue [10] described nonblock-
ing quantum switch with Oðn2Þ quantum gates. This design
relies on quantum circuit representations of unicast and
multicast maps given in [5] and [6]. The networks in [7], [8],
[9], [10] are limited to satisfying one-to-one or unicast
assignments between inputs and outputs. In this paper, we
focus on multicasting of quantum information on an n-input
and n-output network.

Multicasting or generalized connection networks have
been extensively studied in the classical information
domain. A survey of these networks is given in [11]. These
networks can be widely classified into three classes. The first
class contains multicast networks based on the three-stage
Clos network. Networks in this class require complex
routing algorithms and are not self-routing in general.
Consequently, these networks cannot easily be implemented
using quantum circuits. The second class consists of net-
works in which multicasting is decomposed into two stages.
The first stage, called a generalizer, generates all the
required copies of the input packets and the second stage
routes these copies to their desired outputs [12], [13], [14].
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The third class of multicasting networks, introduced by
Nassimi and Sahni [15], is based on a recursive decomposi-
tion of generalized connectors into smaller ones. Nassimi
and Sahni’s generalized connector, however, requires a
parallel computer model connected in cube or perfect shuffle
topology for computing routes. Lee and Oruç used a similar
approach in their Oðn log2 nÞ generalized connector in which
routes are determined locally at internal nodes by using local
packet headers [1], [11]. Thus, their network is self-routing.

As in the case of quantum Baseline or sorting networks,
we begin with a meaningful interpretation of multicasting
in a quantum network. In a classical multicasting network,
packets at inputs are routed to outputs under the assump-
tion that a packet at any given input may be routed to one
or more outputs. One restriction that is often applied is that
such multicast assignments may not direct more than one
packet to a given output. Furthermore, assignments in a
classical multicast network can only be issued one assign-
ment at a time even though they can be overlapped by
pipelining. In contrast, in a quantum multicast network,
packets themselves are made out of quantum bits and as
such they represent a superposition of possible assignment
patterns of packets that may be routed through such a
network all at once due to the principle of quantum
parallelism. It is this quantum parallelism aspect of multi-
casting that will be explored in this paper.

We extend Lee and Oruç’s approach to the domain of
quantum information processing to design an n� n gen-
eralized quantum connector that will also be called n-GQC.
Since it is impossible to copy arbitrary quantum states due
to the no-cloning theorem, multicasting of quantum states is
also impossible. However, a certain set of orthogonal states
can be copied by Wootters and Zurek’s copying machine.
For example, a controlled-not gate transforms the two-qubit
state ð�j0i þ �j1iÞ � j0i to �j00i þ �j11i, which can be
interpreted as follows: a source qubit that is j0i with
probability �2 and j1iwith probability �2 is copied such that
the source and target qubits are in state j00iwith probability
�2 and j11i with probability �2. In essence, the copying of a
single qubit in state j0i or j1i into a multitude of qubits as
described in [6] is a consequence of such copying. We
extend this controlled-not gate-based single-qubit copy
operation to a quantum gate that copies quantum informa-
tion from a set of qubits to another set of qubits, each of
which is initialized to the blank state j0i. This copying
operation amounts to the copying of classical packets
contained in a multiqubit quantum state as a probabilistic
superposition. Therefore, the n-GQC essentially multicasts
superposed classical packets that will be referred to as
quantum packets in this paper.

Such switching of classical packets via quantum switch-
ing networks may prove useful for building quantum
communication networks when quantum systems become
feasible and information is transmitted entirely in quantum
domain from source to destination. We would not need to
convert inherently quantum data to classical domain, switch
it, and then convert it back to quantum. This would lead to
the realization of extremely fast quantum communication
networks in the future.

In the course of designing a quantum generalized
connector (n-GQC), we introduce another quantum network,
called an n� n quantum concentrator (n-QC). This network

maps quantum states on any m of its inputs to its top
m outputs, for any m; 1 � m � n. The n-QC is a self-routing
multistage network that uses Oðn lognÞ quantum gates. It
plays a key role in the decomposition of a generalized
connector into smaller ones. As there is no multicasting
involved in a concentrator, it can concentrate both arbitrary
quantum states and superposed classical packets.

This quantum concentrator is derived by modifying the
classical concentrator described by Lee and Oruç. The main
bottleneck in transforming this classical concentrator to the
quantum domain is the balancer network used in their
design that distributes packets from n input ports onto two
n=2-input networks. Their balancer network is based on a
binary tree on which bits are propagated in both forward and
backward directions. Here, we propose a reversible balancer,
called an n-quantum balancer, on which data are propagated
only in the forward direction. This quantum balancer then
facilitates the design of a quantum concentrator.

The rest of the paper is organized as follows: In Section 2,
we give a brief introduction to core concepts in quantum
information science and quantum switching. In Section 3,
we define some basic terms and introduce the notation that
is used in the rest of the paper. In Sections 4 and 5, we
present the designs of the n-QC and the n-GQC, respec-
tively. In Section 6, we study the behavior of n-GQC when
more than one input packet is addressed to the same
output, i.e., when output contention occurs. In Section 7, we
compute the complexities of these networks in terms of
number of gates used and routing time or gate-level depth.
Finally, Section 8 contains the concluding remarks.

2 PRELIMINARIES

We give a short introduction to core concepts in quantum
information science and introduce the quantum gates that
are used to construct the n-GQC.

2.1 Qubits and Quantum Gates

The indivisible unit of classical information is the bit that can
take either one of the two values: 0 or 1. The corresponding
unit of quantum information is the quantum bit or qubit that
can simultaneously be both 0 and 1. In general, a qubit’s state
is a unit vector in two-dimensional complex Hilbert space
and can be expressed as j i ¼ �j0i þ �j1i, where �; � 2 CC
and j�j2 þ j�j2 ¼ 1. Vectors j0i and j1i are called computa-
tional bases. On measurement in which the qubit’s state is
projected onto the computational bases, the qubit is
observed to be found either in state j0i or in state j1i with
probabilities j�j2 and j�j2, respectively.

The state of an n-qubit system is a vector in a 2n-
dimensional complex Hilbert space that is a tensor product
of the two-dimensional spaces associated with individual
qubits. An n-qubit state can be expressed as

j � i ¼ �0j00 � � � 0i þ �1j00 � � � 1i þ � � � þ �2n�1j11 � � � 1i; ð1Þ

where �i 2 CC and
P2n�1

i¼0 j�ij
2 ¼ 1, and the n-bit vectors

j00 � � � 0i; . . . ; j11 � � � 1i constitute the bases of the space.
As in a single qubit system, if all the qubits in the n-qubit

system are measured, the n-bit string j�ii is observed with
probability j�ij2, where i ¼ 0; 1; . . . ; 2n � 1. The notation j � i
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will be used to denote a multiqubit vector or bit string in
this paper. A single qubit state will be denoted by j i.

A quantum gate is a linear and unitary transformation
from one quantum state, called an input state, to another
quantum state, called an output state. An example for a
one-qubit gate is the Hadamard gate, which transforms the
basis vectors j0i and j1i as follows:

j0i !H 1ffiffiffi
2
p ðj0i þ j1iÞ; j1i !H 1ffiffiffi

2
p ðj0i � j1iÞ: ð2Þ

Due to linearity, this gate transforms a general state �j0i þ
�j1i to �þ�ffiffi

2
p j0i þ ���ffiffi

2
p j1i. Unitarity implies that quantum

gates are reversible, i.e., it is possible to identify the input
state uniquely from a given output state as seen below:

1ffiffiffi
2
p ðj0i þ j1iÞ !H j0i; 1ffiffiffi

2
p ðj0i � j1iÞ !H j1i; ð3Þ

where, in this case, the Hadamard gate is its own inverse.
Another type of quantum gate that is extensively used

for manipulating qubits is a controlled quantum gate, e.g., a
controlled-Hadamard or a controlled-NOT gate. One such
gate, called controlled-controlled-not (CC-NOT) gate that
has two control qubits (c1 and c2), is shown in Fig. 1a. This
gate performs the following operation:

jc1; c2; xi �!
CC�NOTjc1; c2; ðc1: �c2Þ � xi; ð4Þ

i.e., it inverts x when c1 ¼ 1 (indicated by solid circle) and
c2 ¼ 0 (indicated by open circle). Therefore, it maps basis
vector j100i to j101i and j101i to j100i. Rest of the basis
vectors are passed unchanged. We follow this notation of
solid and open circles to indicate the functioning of control
qubits in the rest of the paper.

2.2 Quantum Switch Gate and Copier

The basic building block of quantum switching networks is
a multiqubit gate, called a controlled-swap gate or a switch
gate, as shown in Fig. 1b [8], [16], [17]. It swaps two sets of
qubits when a control qubit c is j1i; otherwise, it passes them
unchanged. Therefore, it can be used as a 2� 2 switch for
routing quantum information. The transformation per-
formed by this gate can be expressed as

j0icj�xij�yi �!
SWG j0icj�xij�yi;

j1icj�xij�yi �!
SWG j1icj�yij�xi;

ð5Þ

where j�xi and j�yi are equal length binary strings. A switch
gate can have multiple control inputs. For example, the
switch gate shown in Fig. 1c swaps its input packets when

control qubits c1 and c2 are j0i and j1i, respectively;
otherwise, it directly passes them on its outputs.

While quantum switch gates are essential to perform
permutation maps, we need quantum copiers to replicate the
classical components of multiqubit quantum states. This is
done by using a collection of controlled-not gates as shown
in Fig. 1d by which a set of source qubits is copied to a set of
target qubits initialized to state j0i. We represent these gates
collectively as one controlled-not gate using bold lines, as
shown in Fig. 1e. The copying operation performed by this
gate is

j�xisj�0it �!
COP j�xisj�xit: ð6Þ

As an example, two source qubits in state

1=
ffiffiffi
2
p
j00is þ 1=2j10is þ 1=2j11is ð7Þ

are transformed as

1ffiffiffi
2
p j00is þ

1

2
j10is þ

1

2
j11is

� �
j00it

�!COP 1ffiffiffi
2
p j00isj00it þ

1

2
j10isj10it þ

1

2
j11isj11it;

ð8Þ

which shows that a copy of each component of a quantum
state is created. This copier, which is essentially Wootters
and Zurek’s quantum copying machine [18], [19], is exactly
what we need when multicasting superposed classical data
using a quantum switching network.

3 QUANTUM PACKETS AND QUANTUM

ASSIGNMENTS

A quantum packet consists of two sets of qubits, called the
address field and data qubits, respectively, and an extra qubit,
called a routing qubit that indicates the presence (when set
to j1i) or absence (when set to j0i) of a quantum packet on
the corresponding address field and data qubits. The
address field contains routing information that is used to
route the data qubits.

A quantum packet, consisting of k classical packets in
which packet i has routing bit ri, address field �ai, and
data �di, for i ¼ 0; 1; . . . ; k� 1, is represented as

Xk�1

i¼0

�ijri; �ai; �dii; ð9Þ

where each jri; �ai; �dii denotes a classical packet with
probability coefficient of j�ij2 and it is to be multicast to
the set of outputs specified by its address field �ai when ri is
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1. The set of outputs specified by the address field �ai is
called the fan-out set of packet i and is represented as Fi. The
size of the fan-out set is called the fan-out of the packet i.
When ri is 0, packet jri; �ai; �dii is considered to be empty, i.e.,
even though the packet exists, a quantum switching
network routing this packet will ignore its address and
data bits.

We give an example to make the definition of a quantum
packet more clear. Consider a 4� 4 network in which an
input has two packets A and B, which are to be routed with
probabilities 3=4 and 1=4, respectively. Suppose that the
fan-out sets of A and B are f1; 3g and f1g, respectively. We
use a 4-bit address field, o0o1o2o3, where oi is set to 1 when
the fan-out set of a packet contains output i. The quantum
packet on this input is a superposition of two classical
packets, expressed asffiffiffi

3
p

2
j1; 0101; Ai þ 1

2
j1; 0010; Bi: ð10Þ

In general, at least n bits are needed to specify the
destinations of an input in an n� n multicast network, as
noted in [1]. This is because an input can have up to 2n

destination patterns.
There is more than one possible interpretation of this

quantum packet representation. We mention two such
interpretations. One is that if A and B denote the same
packet, then this packet will likely be routed to outputs 1
and 3 with probability 3=4 and to output 2 with probability
1=4. The second interpretation is that the input source is
likely to generate one of the two different packets. One of
these two packets is generated and routed to outputs 1 and 3
with probability 3=4 and the other is generated and routed to
output 2 with probability 1=4. Nonetheless, in both inter-
pretations, either a packet appears at both outputs 1 and 3
with probability 3=4 or at output 2 only with probability 1=4.
Therefore, for consistency of our statements, we shall
assume the second interpretation.

An assignment pattern over an n� n quantum switching
network is a sequence of classical packets, each of which
belongs to a quantum packet on a distinct input of the
network from top to bottom. We say that an assignment
pattern is noncontending when no two classical packets with
routing bits of 1 in the pattern are addressed to the same
output. A quantum assignment on an n� n quantum switch-
ing network is a superposition of a set of assignment
patterns. A quantum assignment is called noncontending if
and only if all of its assignment patterns are noncontending;
and called contending otherwise. These definitions are
illustrated in Fig. 2. An assignment pattern is said to be
unicast when each classical packet is addressed to at most one

output; otherwise, it is said to be multicast. A noncontending
unicast assignment pattern in which every input is paired
with some output is said to be a permutation assignment
pattern.

A quantum assignment consisting of a superposition of a
set of M assignment patterns on an n� n quantum
switching network is called a quantum M-assignment and
can be expressed as

XM�1

k¼0

�kjðrk;0; �ak;0; �dk;0Þ � � � ðrk;n�1; �ak;n�1; �dk;n�1Þi; ð11Þ

where assignment pattern j �Pki ¼ jðrk;0; �ak;0; �dk;0Þ; . . . ; ðrk;n�1;

�ak;n�1; �dk;n�1Þi is a sequence of classical packets in which
ðrk;i; �ak;i; �dk;iÞ is the classical packet on input i. The
probability with which the kth assignment pattern is
realized is j�kj2, where

PM�1
k¼0 j�kj

2 ¼ 1.
When all the inputs have quantum packets of the form

given in (9), the expression for the corresponding quantum
assignment can be obtained by taking the tensor product of
all the input quantum packets.

We illustrate this by considering the example of a 4� 4

network in which input 0 issues the quantum packet
ffiffi
3
p

2 j1;
0101; Ai þ 1

2 j1; 0100; Bi, input 1 has no packet, input 2 issues
the quantum packet j1; 0010; Di, and input 3 issues the
quantum packet 1ffiffi

2
p j1; 1001; Ei þ 1ffiffi

2
p j1; 1000; F i. Then, the

quantum assignment isffiffiffi
3
p

2
j1; 0101; Ai þ 1

2
j1; 0100; Bi

� �
� j0; 0000; Ci

� j1; 0010; Di � 1ffiffiffi
2
p j1; 1001; Ei þ 1ffiffiffi

2
p j1; 1000; F i

� �
;

ð12Þ

which can be written as a superposition of four multicast
assignment patternsffiffiffi

3
p

2
ffiffiffi
2
p jð1; 0101; AÞ; ð0; 0000; CÞ; ð1; 0010; DÞ; ð1; 1001; EÞi

þ
ffiffiffi
3
p

2
ffiffiffi
2
p jð1; 0101; AÞ; ð0; 0000; CÞ; ð1; 0010; DÞ; ð1; 1000; F Þi

þ 1

2
ffiffiffi
2
p jð1; 0100; BÞ; ð0; 0000; CÞ; ð1; 0010; DÞ; ð1; 1001; EÞi

þ 1

2
ffiffiffi
2
p jð1; 0100; BÞ; ð0; 0000; CÞ; ð1; 0010; DÞ; ð1; 1000; F Þi:

ð13Þ

It is seen that the first assignment pattern in the above
quantum assignment is contending because packets A and E
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Fig. 2. Assignment patterns: (a) noncontending assignment pattern; (b) contending assignment pattern; Quantum assignments (solid and dashed
lines show two assignment patterns): (c) noncontending quantum assignment; (d) contending quantum assignment.



in this pattern are addressed to output 3. The rest of the
three assignment patterns are noncontending.

Quantum assignments are realized by a generalized
quantum connector, which is defined and constructed in
Section 5. This network is constructed using a quantum
concentrator, which is described in Section 4. The basic
building block of our quantum concentrator design is
another network, which is called a quantum odd-even
splitter and is described in Section 4.2. This network is, in
turn, constructed using what is called a quantum balancer
that is described in Section 4.1.

4 QUANTUM CONCENTRATOR

To construct a generalized quantum connector, a quantum
concentrator will be used. A quantum concentrator is a
quantum switching network that transforms an input assign-
ment pattern in which only the routing bits matter and the
address fields are ignored. The packets with routing bits of 1
are routed consecutively to the top outputs of the network in
some nonspecifiable order. The remaining packets are routed
to the remaining outputs. An n� n quantum concentrator
will be denoted by n-QC.

We represent the transformation applied by an n-QC to
an input assignment pattern j �P i as

j �P ij�0iaux�!
n-QCjQCð �P Þij�ð �P Þiaux; ð14Þ

where j�ð �P Þiaux denote output auxiliary qubits and
jQCð �P Þi denotes the output assignment pattern for input
assignment pattern j �P i. Due to the linearity of quantum
networks, a quantum assignment

PM�1
k¼0 �kj �Pki is trans-

formed by an n-QC as

XM�1

k¼0

�kj �Pki
 !

j�0iaux

�!n-QC XM�1

k¼0

�kjQCð �PkÞij�ð �PkÞiaux:
ð15Þ

Thus, all the assignment patterns in the quantum assign-
ment are individually concentrated in parallel.

When a quantum concentrator maps the packets in two
or more input assignment patterns with the same number of
coinciding routing bits of 1, it must apply the same
permutation to all the input assignment patterns. For
example, if a 4-QC concentrates input pattern jð1; AÞð0; XÞ
ð1; BÞð0; Y Þi to pattern jð1; BÞð1; AÞð0; XÞð0; Y Þi, then it must
concentrate another pattern jð1; A0Þð0; X0Þð1; B0Þð0; Y 0Þi to
pattern jð1; B0Þð1; A0Þð0; X0Þð0; Y 0Þi.

For an n-QC to be reversible, auxiliary qubits are needed
since two or more input assignment patterns may be mapped
to the same output assignment pattern. The following
theorem specifies the number of auxiliary output qubits
needed to make an n-QC reversible:

Theorem 1. The minimum number of auxiliary qubits needed in
order to realize an n-QC is dlog2ð ndn2eÞe.

Proof. For a fixed output assignment pattern in which top

m packets have routing bits of 1, there are ðnmÞ possible

input assignment patterns that would be concentrated to

the given output pattern. In order to ensure reversibility,

the output state of the auxiliary qubits should be

different for each of these input patterns. Therefore, we

require at least dlog2ðnmÞe auxiliary qubits, where 0 � m �
n� 1. Since dlog2ðnmÞe is maximum for m ¼ dn2e, we need

at least dlog2ð ndn2eÞe auxiliary qubits.

To show sufficiency, assume that the total number of

input qubits for the n-QC is ni ¼ nð1þ dÞ, where d is the

number of address and data qubits combined in each

packet, and we have naux auxiliary qubits, where naux
satisfies the condition given in the theorem. Including

the auxiliary qubits, the n-QC is a ðni þ nauxÞ-qubit

quantum circuit. We can concentrate the 2ni bit strings

j �P ij�0iaux that correspond to all the assignment patterns

by breaking the ties using auxiliary qubits. Having

mapped bit strings j �P ij�0iaux in a one-to-one fashion, the

remaining 2ðniþnauxÞ � 2ni input bit strings in which

auxiliary qubits are not all in state j0i can be mapped

to the same number of remaining output bit strings

arbitrarily in a one-to-one fashion. This establishes the

reversibility of n-QC and the statement follows. tu
Observe that dlog2ð ndn2eÞe is OðnÞ. Therefore, an n-QC

requires at least OðnÞ auxiliary qubits. The construction of
n-QC given in this paper uses Oðn lognÞ auxiliary qubits.
Also, since the n-QC operation is defined as a permutation
of the packets in an assignment pattern, it is easy to verify
that the n-QC routes arbitrary quantum states on any m of
the inputs to its top m outputs [20]. This can be
accomplished by setting the routing qubits on the inputs
that need to be concentrated to j1i.

In rest of the section, we present an n-QC (n being a
power of 2) using the classical n-concentrator given by Lee
and Oruç [1], [11] as a starting point. We first design a
recursive quantum balancer network, which is constructed
using controlled-not gates and does not require backward
data propagation. This quantum balancer is used to obtain a
quantum odd-even splitter, which divides the packets with
routing bits of 1 in its input assignment pattern equally
between its odd- and even-numbered outputs. The packets
on odd and even sets of outputs are then recursively
concentrated by two n=2-QCs and are finally merged using
a shuffle stage to obtain an n-QC.

4.1 Quantum Balancer

An n-quantum balancer, denoted by n-QB, is an n-qubit
quantum gate, which transforms a computational basis
vector or bit string jb0b1 � � � bn�1i in which m bits are 1 to an
output bit string with bm=2c of these bits converted to 0 and
dm=2e left unchanged, where 1 � m � n. The bits bi which
are 0 can be converted to either 0 or 1 so that the overall
mapping is reversible, i.e., there is a one-to-one mapping
between the 2n input and output bit strings. We show by
induction that it is possible to construct an n-QB.

For n ¼ 1, an identity gate works as a 1-QB. For n ¼ 2,
the following transform, which is a controlled-not gate,
works as a 2-QB: j00i ! j00i, j01i ! j01i, j10i ! j11i,
j11i ! j10i. For n > 2, suppose that we have a reversible
k-QB for every k < n. Choose nonzero n1 and n2 such that
n1 þ n2 ¼ n. The first n1 qubits are balanced using an n1-QB

SHUKLA AND ORUÇ: MULTICASTING IN QUANTUM SWITCHING NETWORKS 5



and the rest of the qubits are balanced using an n2-QB.
Suppose that there are m1 ones in string b0 � � � bn1�1 and m2

ones in bn1
� � � bn�1. We complement every output of the

n2-QB if m1 is odd; otherwise, we leave them unchanged.
To see that we now have a n-QB: if m1 is even, bm1=2c þ
bm2=2c ¼ bðm1 þm2Þ=2c of the ones are converted to zeros.
If m1 is odd, bm1=2c þ dm2=2e ¼ bðm1 þm2Þ=2c of the ones
are converted to zeros. Next, we verify that this network is
reversible. Since n1-QB is reversible, we can uniquely
determine b0 � � � bn1�1 from the top n1 outputs from which
we can obtain m1. We complement the bottom n2 output
bits if m1 is odd; otherwise, we leave them unchanged.
Hence, we can uniquely determine bn1

� � � bn�1 using the
resulting bits, since n2-QB is reversible. Therefore, we can
construct an n-QB for any n � 1 using the procedure that
has been described.

For n being a power of 2, i.e., n ¼ 2p, we can recursively
construct anOðlognÞdepth n-QB by choosing n1 ¼ n2 ¼ n=2.
We present a quantum circuit realization of the n-QB using
this procedure in Fig. 3. We place an additional requirement
on the n-QB that its last or bottommost output bit is always
equal to the parity of the input string jb1b2 � � � bni, while
satisfying the functionality of an n-QB given in the above
definition. This network consists of two similar n=2-QB gates
followed by an ðn=2þ 1Þ-input controlled-not gate, which
complements the output bits of the bottom n=2-QB when the
parity output of the top n=2-QB is 1; otherwise, it does not
affect any of the outputs. Next, we show that this network is
an n-QB.

Theorem 2. The recursive network shown in Fig. 3a is an n-QB
(for n being a power of 2, i.e., n ¼ 2p) in which the last output
is the parity of the input bits.

Proof. For p ¼ 1, input sequences 00, 01, 10, and 11 are
mapped to 00, 01, 11, and 10, respectively, by a
controlled-not gate, therefore, it is a 2-QB and it also
satisfies the parity requirement. For p > 1, since the
ðn=2þ 1Þ-input controlled-not gate complements all the
outputs of the lower n=2-QB when the last output of
upper n=2-QB is 1, it is sufficient to show that the
bottommost or last output bit of n-QB represents the
parity of its input bits. Suppose that 2p-QB satisfies this
condition. Assuming that m1 and m2 are the number of
input bits that are 1 in the upper and lower halves of a

2pþ1-QB, respectively, we have the following four cases
for the 2pþ1-network:

1. Both m1 and m2 are even: In this case, the
ð2p þ 1Þ-input controlled-not gate is not active
since the parity output of the top 2p-QB is 0. The
output parity bit is 0 since the parity output of
bottom 2p-QB is 0.

2. m1 even and m2 odd: Again, the controlled-not gate
is not active and the output parity bit is 1 since the
parity output of lower 2p-QB is 1.

3. m1 odd and m2 even: In this case, the controlled-not
gate is active since the parity output of top 2p-QB is
1. It complements all the output bits of the bottom
2p-QB. Thus, the output parity bit becomes 1.

4. Both m1 and m2 odd: In this case also, the
controlled-not gate complements all the output
bits of the bottom 2p-QB. Thus, the output parity
bit becomes 0.

Therefore, the parity requirement is satisfied for the
2pþ1-QB, and this completes the proof. tu

It can be easily verified that the mirror image of the
n-QB, as shown in Fig. 3c, restores the output qubits of the
quantum balancer to their initial state. This network is
needed for restoring some of the auxiliary qubits used in the
quantum odd-even splitter to their initial state as explained
in the next section.

4.2 Quantum Odd-Even Splitter

An n-quantum odd-even splitter is an n� n switching network,
which permutes an input assignment pattern in which
m packets have routing bits of 1, such that dm=2e of these
packets appear on the even outputs and the remaining appear
on the odd outputs, where 1 � m � n� 1. A set of auxiliary
qubits initialized to j�0i is used to ensure reversibility.

Our construction of an 8-input odd-even splitter is
shown in Fig. 4. The n-quantum odd-even splitter network
consists of n=2 splitter switches, SW0, SW1; . . . ; SWn=2�1

driven by control qubits c0; c1; . . . ; cn=2�1, respectively. For a
given assignment pattern, switch SWi is said to be balanced
if it has packets on both of its inputs or no packets at all, i.e.,
r2i ¼ r2iþ1. The address and data fields of the packets in the
assignment pattern are collectively represented as �pi in the
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Fig. 3. Quantum balancer: (a) an n-QB in which the last output bit is 1 if the inputs have odd parity and is 0 if the input bits have even parity; (b) 8-QB;
and (c) inverse 8-QB.



figure. Using the n=2-QB on qubits c0; c1; . . . ; cn=2�1, half of
the packets at the unbalanced switches are routed to the
even-numbered outputs and the other half are routed to the
odd-numbered outputs of quantum odd-even splitter. The
packets on the balanced switches are always equally
distributed between the odd-and even-numbered outputs,
irrespective of the switch settings. Therefore, the quantum
odd-even splitter equally distributes the input packets
between the odd and even outputs. A brief description of
the quantum circuit follows.

Using two controlled-not gates, qubit ci is set in state j1i if

switch SWi is unbalanced; otherwise, it is set in state j0i. The

n=2-QB balances the control qubits ci, i ¼ 0; . . . ; n=2� 1,

which control the splitter switches. The quantum circuit for a

splitter switch is shown in Fig. 4b. This switch uses one extra

qubit si, called switching qubit, which was not shown in Fig. 4a.

By setting this qubit appropriately, and using switch gates as

shown in the figure, the input packet on an unbalanced switch

is routed to the upper (or even) output when the control qubit

ci is j1i; otherwise, it is routed to the lower (or odd) output.

A balanced splitter switch may be set either way without

affecting the splitting property of the odd-even splitter.

The quantum gates and the inverse n=2-QB shown on the

right side of switches SWi in Fig. 4a are used for restoring
qubits ci to j0i. Even though the routing bits might have been

switched by the splitter switches along with the input
packets, they would still maintain their balanced or un-

balanced status. Therefore, these qubits can be used to restore

the control qubits ci to their original state j0i, as shown in the
figure, so that decoherence on qubits ci does not have any

effect on the performance of the network. Only the switching
qubits si have not been restored to their initial state.

4.3 Construction of n-QC

We can recursively realize an n-QC by using an n-quantum

odd-even splitter and two n=2-QCs as shown in Fig. 5a.
Using a Banyan connection pattern, the even outputs of the

odd-even splitter are connected to the upper n=2-QC and

the odd outputs are connected to the lower n=2-QC. The
outputs of n=2-QCs are connected alternately to the final

n outputs using a shuffle connection pattern.

Theorem 3. The network shown in Fig. 5a is an n-QC.

Proof. For n ¼ 2, a splitter switch in which the control input
is set to j1i works as a 2-QC. For n ¼ 2p, where p > 1,
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Fig. 4. Quantum odd-even splitter: (a) 8-input quantum odd-even splitter, (b) splitter switch (SWi).

Fig. 5. n-quantum concentrator (n-QC): (a) recursive construction of n-QC, (b) 4-QC quantum circuit.



consider an input assignment pattern in which
m packets have routing bits of 1, where 0 � m � n. The
odd-even splitter transforms it into an assignment
pattern in which dm=2e of these packets are at the inputs
of the upper n=2-QC and bm=2c are at the inputs of the
lower n=2-QC. The n=2-QCs concentrate their input
assignment patterns and these packets are concentrated
at their top dm=2e and bm=2c outputs, respectively.
These packets are routed to the top m outputs of the
n-QC using the shuffle connection. Therefore, by induc-
tion, the packets having routing bits of 1 are concen-
trated to the top m outputs and the packets with routing
bits of 0 are sent to the bottom n�m outputs.

We now show that when an n-QC maps the packets in
two or more input assignment patterns with the same
number of coinciding routing bits of 1, it applies same
permutation to all of them. Since the sequence of routing
bits is fixed for all assignment patterns, the settings of the
splitter switches in the odd-even splitter are fixed,
therefore, the sequences of routing bits at the inputs of
the upper and lower n=2-QCs are also fixed. This
inductively implies that the setting of every splitter switch
in the network is fixed. Consequently, same permutation
is applied to all assignment patterns having the same
sequence of routing bits.

Next, we show that if two different assignment patterns
j �P1i and j �P2i are mapped to the same output pattern
jQCð �P1Þi ¼ jQCð �P2Þi, then j�ð �P1Þiaux 6¼ j�ð �P2Þiaux. Since
the control qubits are restored to their initial state, only the
switching qubits constitute as auxiliary qubits. We need to
show that the output state of at least one of the switching
qubits is different for these two input assignment patterns.
Clearly, j �P1i and j �P2i must have the same number of
packets with routing bits of 1. Also, since any two
assignment patterns with coinciding routing bits of 1 are
concentrated using the same permutation, there must be at
least one input at which the routing bits in j �P1i and j �P2i are
different. Therefore, this input would be connected to one
of the topm outputs for one pattern and one of the bottom
n�m outputs for the other pattern. Hence, the overall
n� n permutations applied to concentrate j �P1i and j �P2i
must be different. The topology of the n-QC is easily seen
to provide a unique path between each input and each
output. Therefore, for the two permutations to be
different, at least one of the 2� 2 splitter switches must
be set in through state for one of the assignment patterns
and in cross state for the other. Consequently, the output
states of the two assignments are different when the
switching qubits si are taken into account and we have
j�ð �P1Þiaux 6¼ j�ð �P2Þiaux. tu

To illustrate the concentration operation done by n-QC,
we give an example for n ¼ 4. An expanded quantum
circuit for the 4-QC is shown in Fig. 5a. The input quantum
assignment pattern has three classical packets A, B and C,
on inputs 1, 2, and 3, respectively. Input 0 has no packet,
i.e., r0 ¼ 0. The address and data fields of this input are
denoted by x in the figure. Eight auxiliary qubits labeled
c0; . . . ; c3 and s0; . . . ; s3 are used. All of them are initialized
to state j0i. For clarity, we have not used the ket notation in
the figure. The transformation done by the 4-QC in this
example is expressed as

jð0; xÞð1; AÞ; ð1; BÞ; ð1; CÞij�0iaux �!
4-QC

jð1; AÞð1; CÞ; ð1; BÞ; ð0; xÞi
��0c0

0c1
0c2

0c3
1s0

0s1
0s2

1s3

�
aux:

It is seen that the input packets are concentrated on the top
three outputs of the 4-QC. Control qubits ci are restored to
j0i, whereas some of the switching qubits si are not restored.

5 GENERALIZED QUANTUM CONNECTOR

A classical switching network is called a generalized connector
if it realizes any noncontending multicast assignment
pattern between its inputs and outputs. In this section, we
extend this definition to the quantum domain for multi-
casting quantum packets. We go back to the notation
introduced in Section 3 to represent quantum assignment
patterns in which an input classical packet is represented by
the 3-tuple ðr; �a; �pÞ, where �a and �p are ma and md bit binary
strings, respectively.

An n-generalized quantum connector or n-GQC is an n� n
quantum switching network, which transforms any non-
contending assignment pattern j �P i ¼ jðr0; �a0; �d0Þ; . . . ; ðrn�1;
�an�1; �dn�1Þi such that, for i ¼ 0; . . . ; n� 1, if ri ¼ 1, then the
data �di of the packet on input i are copied onto the data fields
of all the outputs in its fan-out set. The routing bits on these
outputs are set to 1. The routing bit of an output to which no
input packet is addressed is set to 0. Each output consists of
routing and data qubits only and does not contain address
qubits. We represent this transformation as follows:

j �P ij�0iaux �!
n-GQC jGQCð �P Þij�ð �P Þi
¼
��ðr00; �d00Þ; . . . ; ðr0n�1;

�d0n�1Þ
�
j�ð �P Þi:

ð16Þ

The auxiliary qubits on the left-hand side are needed for two
reasons: to ensure reversibility and to create copies of the
input packets. The auxiliary and address qubits are
transformed to a state j�ð �P Þi such that, for any two different
input assignment patterns j �P1i and j �P2i for which
jGQCð �P1Þi ¼ jGQCð �P2Þi, we have j�ð �P1Þi 6¼ j�ð �P2Þi. Again,
due to the linearity of quantum networks, an n-GQC
simultaneously realizes all the assignment patterns in a
noncontending quantum assignment, i.e., a quantum assign-
ment

PM�1
k¼0 �kj �Pki, in which every assignment pattern is

noncontending, that is transformed as follows:

XM�1

k¼0

�kj �Pki
 !

j�0iaux

�!n-GQC XM�1

k¼0

�kjGQCð �PkÞij�ð �PkÞi:
ð17Þ

The address bits in our quantum packet representation
denote the outputs of the n-GQC and they are not needed
once the packets have reached their desired n-GQC outputs.
When the n-GQC is used as a part of a larger network and
the packets are to be routed further, extra address bits are
needed. In our representation, these address bits can be
included in the data parts of the packets and they are not
discarded by the n-GQC.

Before giving our n-GQC construction, we describe the
addressing schemes that we use to represent address fields
in quantum packets.
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5.1 Addressing Schemes for the n-GQC

As mentioned in Section 3, since there are 2n possible fan-
out sets for each input in an n� n network, at least n bits
are needed per input to address these patterns. The most
straightforward way to code these fan-out sets is to allocate
n bits o0; o1; . . . ; on�1 for each input in which oj is set to 1
when that input is paired with output j. In this paper, we
use a ð2n� 2Þ-bit addressing scheme that is more suitable
for quantum circuit realization of a multistage n-GQC. Both
of these addressing schemes were introduced in [1].

In the ð2n� 2Þ-bit addressing scheme, where n is a
power of 2, each input uses a binary address of the form
b00b01; b10b11b12b13; . . . ; bp�1;0bp�1;1 � � � bp�1;n�1 to specify the
outputs it is paired with, where p ¼ log2 n. The first two bits
specify whether the packet at an input is routed to the
upper half or lower half or both upper and lower halves of
outputs or not routed at all. The next group of four bits is
then used to resolve the location of the same packet within
each half of the upper and lower halves of outputs, and this
is inductively extended. More specifically, for k ¼ 0; . . . ;
p� 1, the outputs are divided into 2kþ1 sets of size 2p�k�1 of
the form i2p�k�1 � j � ðiþ 1Þ2p�k�1 � 1, where i ¼ 0; . . . ;
2kþ1 � 1. For a given input, an address bit bki is set to 1 when
that input is paired with at least one output in set i2p�k�1 �
j � ðiþ 1Þ2p�k�1 � 1.

We use the ð2n� 2Þ-bit addressing scheme in this paper
since it leads to a simpler quantum circuit implementation.
These bits collectively form the address field �ai in the
representation of a quantum packet given in ð9Þ.

5.2 Construction of n-GQC

In this section, we present a multistage quantum network
realization of n-GQC, where n ¼ 2p. It is a recursive network
consisting of a distribution stage followed by two n-QCs and
two n=2-GQCs, as shown in Fig. 6. The distribution stage
consists of n copy nodes, labeled 0 to n� 1 from top to
bottom. Given an input assignment pattern for the distribu-
tion stage, a copy node does one of the following:

. It creates copies of its input packet on both of its
outputs if the fan-out set of the packet contains at
least one output from both top and bottom
n=2 outputs of the n-GQC. For the ð2n� 2Þ-bit
addressing scheme, this happens when b00b01 ¼ 11.

. It routes the input packet on its upper output if
that input packet has at least one output from the
top n=2 outputs but no output from the bottom
n=2 outputs of the n-GQC in its fan-out set. No
packet is sent to the bottom half of outputs in this
case. This happens when b00b01 ¼ 10.

. It routes the input packet on its lower output if that
input packet has at least one output from the bottom
n=2 outputs but no output from the top n=2 outputs
of the n-GQC in its fan-out set. No packet is sent to
the top half of outputs in this case. This happens
when b00b01 ¼ 01.

. It divides the remaining address bits between the
two outputs using the scheme shown in Fig. 7b.
Consequently, the size of the address fields in the
packets received by the n=2-GQCs in Fig. 6 is n� 2.
The same addressing scheme is recursively followed
in the subsequent stages and a copy node always
uses the first two address bits of its input packet to
determine its settings, irrespective of its stage.

The address bits b00b01 are never set to 00 for an input

packet with routing bit of 1. Consequently, the routing and

data bits of an input packet having b00b01 ¼ 00 can be passed

to either of the outputs without affecting the n-GQC

functionality.
The quantum circuit implementation of a copy node is

shown in Fig. 7a. When b00 and b01 are 00, routing and

address bits are passed to the upper output by convention.

When b00 and b01 are 10, the routing and data bits are passed

to the upper output. When they are 01, the routing and
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Fig. 7. Copy node: (a) quantum circuit for a copy node, (b) division of the
address field at a copy node for the ð2n� 2Þ-bit addressing scheme.

Fig. 6. Generalized quantum connector.



data bits of the input packet are sent to the lower output by
swapping them with a blank quantum packet initialized in
state j�0i, using the switch gate as shown. When b00 and b01

are 11, copies of the routing and data bits are created on
both outputs of the copy node by using the multiqubit
quantum copier gate. The remaining address bits are
divided between the two outputs as described before.

The routing and data qubits on an output to which no
packet is sent are set to j0i. The top n=2 outputs of the two
n-QCs are connected to two n=2-GQCs in the next stage, as
shown in Fig. 6. The bottom n=2 outputs of the n-QCs are
dropped. We now have the following theorem:

Theorem 4. The network shown in Fig. 6 is an n-GQC.

Proof. For a noncontending assignment pattern of size n, a
maximum of n=2 packets are assigned to be routed to the
top as well as to the bottom n=2 outputs of the n-GQC.
Therefore, the output of the distribution stage is an
assignment pattern of size 2n, which is a concatenation of
two n-assignment patterns at the inputs of the two
n-QCs, each pattern having a maximum of n=2 packets
with routing bits of 1. These packets are concentrated on
the top n=2 outputs of the n-QCs. The bottom n=2
outputs of the n-QCs receive no packets. These outputs
are in state j�0i and dropped. Therefore, all the auxiliary
qubits used in the distribution stage are restored to their
initial state. The two n=2-GQCs receive noncontending
assignment patterns of size n=2 each, which are
inductively realized. For n ¼ 2, a copy node works as a
2-GQC. Consequently, the shown quantum network is
an n-GQC by induction, where n is a power of 2. tu

An expanded version of n-GQC is shown in Fig. 8 for
n ¼ 8. For simplicity, we have not expanded the quantum
concentrators in the figure. We denote the 2p�k-QCs in the

kth concentrator stage of the n-GQC as QCk;0; QCk;1 . . . ;
QCk;2kþ1�1 from top to bottom, where p ¼ log2 n and 0 �
k � p� 1. The set of outputs of n-GQC which can be
reached from QCk;j is represented as Ok;j ¼ fj2p�k�1; . . . ;
ðjþ 1Þ2p�k�1 � 1g, where 0 � j � 2kþ1 � 1.

Fig. 8 also illustrates how a quantum multicast assign-
ment is realized by the 8-GQC. The input quantum packets
to the network are shown in the figure. We use subscripts to
show the output addresses in a quantum packet. For
example, input 2 has quantum packet

ffiffi
3
p

2 Bð1;2Þ þ 1
2Cð1;2;6Þ,

where packet B having fan-out set f1; 2g is to be routed
with probability 3=4 or packet C having fan-out set f1; 2; 6g
is to be routed with probability 1=4. Inputs 1, 3, 4, and 7 do
not have any packets. The corresponding quantum assign-
ment is a superposition of four assignment patterns with
coefficients

ffiffiffi
3
p

=
ffiffiffi
8
p

,
ffiffiffi
3
p

=
ffiffiffi
8
p

, 1=
ffiffiffi
8
p

, and 1=
ffiffiffi
8
p

, respectively,
which are shown in the figure by gray vertical columns on
the input side with coefficients on top. This quantum
assignment is noncontending since all the four assignment
patterns are noncontending. The figure illustrates how the
four assignment patterns are realized by the 8-GQC, by
showing the output quantum state at each stage of the
network. On measurement, one of the four patterns shown
at the output will be observed with probabilities 3=8, 3=8,
1=8, and 1=8, respectively. Therefore, packets D, A and A
reach outputs 0, 3, and 5 with probability 1. Packet B is
observed on outputs 1 and 2 with probability 3=4. With
probability 1=4, packet C is observed on these two outputs.
The probability of observing a packet on output 6 is 1=4 and
on output 7 is 1=2.

We now count the number of auxiliary qubits used in the
n-GQC. Every copy node requires md þ 1 auxiliary qubits as
a blank packet, where md is the number of bits in the data
part of a packet. Consequently, the total number of auxiliary
qubits used in the distribution stages of the network is
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Fig. 8. 8-GQC realizing a noncontending quantum assignment.



ðmd þ 1Þn log2 n. Also, since an n-QC uses n
2 log2 n auxiliary

qubits, the total number of auxiliary qubits used in the
concentration stages of the n-GQC is

Xp�1

k¼0

2kþ1 n=2k

2
log2ðn=2kÞ ¼

n

2
ðlog2 nþ 1Þ log2 n: ð18Þ

Therefore, the n-GQC uses Oðn log2 nÞ auxiliary qubits.
It is always possible to restore all of the auxiliary qubits

used in a switching network to their initial state once the
desired switching operation has been completed, i.e., the
data fields of the input packets have reached their desired
destinations. This can be accomplished by the inverse of the
switching network, which uses routing, address, and
auxiliary qubits. However, it is desirable that the auxiliary
qubits are restored as early as possible so that they can be
reused, and also their decoherence does not affect the
switching operation [16], [17]. We adhere to this policy by
restoring all of the auxiliary qubits used in the n-QC except
the switching qubits. For noncontending assignment pat-
terns, the switching qubits used in the quantum concen-
trators are the only auxiliary qubits that are not restored in
an n-GQC. These can always be restored afterward using
the inverse of n-GQC as described before.

So far, we have seen that an n-GQC realizes a
noncontending assignment pattern without any blocking.
In the next section, we describe how blocking occurs when a
contending assignment pattern is routed through the n-GQC
design given in this section.

6 BEHAVIOR OF n-GQC FOR CONTENDING

ASSIGNMENTS

A substantial amount of recent research on multicast
switching has been focused on developing scheduling
algorithms, which aim to maximize the throughput of an
input-queued multicast switch [21], [22], [23], [24]. A
number of such algorithms require that the packets in a
contending assignment are routed using a fan-out splitting
policy, where a multicast packet can be sent to a subset of
the outputs in its fan-out set. The rest of the fan-out set is
realized in subsequent attempts. It is usually desired that
the multicast switch has the capability to do such a fan-out
splitting internally. It is also desired that the multicast
switch be work-conserving, which means that if an output is

in the fan-out set of at least one of the packets in a
contending assignment, then it should not happen that this
output does not receive any packet. In this section, we show
that, due to internal blocking in case of contending
assignment patterns, the n-GQC works in fan-out splitting
fashion. However, it is not work-conserving.

Consider a contending assignment pattern to an n-GQC
that has m classical packets, out of which mu are addressed
to only upper n=2 outputs, ml are addressed to only lower
n=2 outputs, and mb are addressed both upper and lower
n=2 outputs. Then, in the recursive construction of n-GQC,
the upper n-QC receives mu þmb packets and lower n-QC
receives ml þmb packets. Since a contending assignment
can have more than n=2 packets addressed to the top
n=2 outputs, mu þmb can be more than n=2. In this case,
mu þmb � n=2 packets are blocked or dropped since only
n=2 outputs of the n-QC are connected to the next stage.
Similarly, if ml þmb > n=2, then ml þmb � n=2 packets are
dropped at the lower n-QC. It is easily seen that for such
blocking to occur at either of the n-QCs, it is necessary but
not sufficient that m > n=2. This is because when ml ¼
mu ¼ 0, mb has to be greater than n=2 for blocking. Also, for
a contending assignment, such a blocking will certainly
occur at one of the quantum concentrators in the n-GQC.
Thus, we see that the n-GQC realizes a subset of the set of
output addresses for every packet in a contending multicast
assignment pattern. This subset can also be empty, which
means that some of the packets may be blocked entirely.
Therefore, the n-GQC works in a fan-out splitting fashion.

This is illustrated by an example of a 4-GQC, as shown in
Fig. 9. The contending assignment pattern has four packets
A, B, C, and D with the fan-out sets shown in the figure.
Packets C and D are blocked at the 4-QCs. The fan-out set of
A is fully realized, but the fan-out set of B is partially
realized, since a copy of B is blocked at the bottom 2-QC in
the final stage.

Because of blocked packets on the unused outputs of the
intermediate quantum concentrators, the n-GQC is not
robust against decoherence on these outputs when realizing
a contending quantum assignment. Such a decoherence
would collapse the quantum assignment to only those
assignment patterns that contain the observed packets on
these outputs. This problem does not arise when realizing a
noncontending quantum assignment. This is because the
unused outputs of the intermediate concentrators are
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always empty for every assignment pattern in the assign-
ment, as explained before in Section 5.2. Next, we define the
work-conserving property for an n-GQC.

An assignment pattern j �P 0i ¼ jðr00; �a00; �d00Þ; . . . ; ðr0n�1; �a0n�1;
�d0n�1Þi is called a subpattern of another assignment pattern

j �P i ¼ jðr0; �a0; �d0Þ; . . . ; ðrn�1; �an�1; �dn�1Þi if, for every i, 0 �
i � n� 1, r0i ¼ 1 implies that ri ¼ 1, �d0i ¼ �di, and F 0i 	 Fi. A

noncontending subpattern j �P 0i of j �P i is said to be maximal

if the fan-out sets [n�1
i¼0 fF 0i : r0i ¼ 1g and [n�1

i¼0 fFi : ri ¼ 1g
are equal.

An n-GQC is called work-conserving if it realizes a
maximal noncontending subpattern of every contending
multicast assignment pattern. It is seen that a contending
multicast assignment pattern can have several maximal
noncontending subpatterns and a work-conserving n-GQC
realizes one of these subpatterns. We have the following for
the n-GQC design given in this paper:

Theorem 5. The n-GQC shown in Fig. 6 is not work-conserving.

Proof. This is seen by considering a contending multicast
assignment pattern having n classical packets in which
the fan-out set of every packet on the top n� 1 inputs is
f1; . . . ; n� 1g and the fan-out set of the packet on the
nth input is f0g. Copies of all the packets on top n� 1
inputs and the packet on the nth input are routed to the
upper n-QC. The packet with fan-out f0g is concentrated
to the nth output of the n-QC, and therefore, is dropped.
Thus, no packet is routed to output 0, which means that
the n-GQC is not work-conserving. tu

As the example in Fig. 9 shows, there are some
contending assignment patterns which do get routed in a
work-conserving fashion by the n-GQC. For a given
contending assignment, this happens when no fan-out loss
occurs at any of the quantum concentrators in the n-GQC.
In other words, at any quantum concentrator, the fan-out
set union of the output packets on top half of outputs is
equal to fan-out set union of input packets, where the
unions are restricted to the outputs reachable by the
quantum concentrator. Also, if we were able to design an
n-QC which concentrates in such a way that it always
maximizes the union of the fan-out sets of its top n=2 output
packets when receiving more than n=2 input packets, then
the n-GQC constructed using such n-QCs will be work-
conserving. Designing such an n-QC is a potential approach
toward the realization of a work-conserving n-GQC.

Finally, we observe that the results given in this section for
contending assignments also hold for the classical version of
generalized connector given in [1], i.e., this network works in
a fan-out splitting manner and is not work-conserving. This
is due to the fact that the classical generalized connector is
functionally similar to the n-GQC and realizes a classical
noncontending assignment in the same fashion as n-GQC
without any blocking. In the next section, we compute the
complexities of the n-QC and n-GQC.

7 COMPLEXITY ANALYSIS

In this section, we compute the complexities of the n-QC and
the n-GQC in terms of the total number of quantum gates
and the gate-level depth. Representing these complexities for
the n-QC as CqcðnÞ and DqcðnÞ, respectively, we have

CqcðnÞ ¼ 2Cqcðn=2Þ þ CsplitðnÞ; ð19Þ

DqcðnÞ ¼ Dqcðn=2Þ þDsplitðnÞ; ð20Þ

where CsplitðnÞ and DsplitðnÞ are the corresponding complex-
ities for an n-quantum odd-even splitter. Since an n-QB has
n� 1 controlled-not gates, and each splitter switch has a
constant number of controlled-not gates, CsplitðnÞ is OðnÞ.
Also, the depth of the n-quantum odd-even splitter is
mainly determined by the depth of n-QB, which is equal to
log2 n. Consequently, DsplitðnÞ is OðlognÞ. Thus, we have
CqcðnÞ ¼ Oðn lognÞ and DqcðnÞ ¼ Oðlog2 nÞ.

For the n-GQC, the complexities in terms of number of
quantum gates CgqcðnÞ, and gate-level depth DgqcðnÞ, are
given by

CgqcðnÞ ¼ 2Cgqcðn=2Þ þ 2CqcðnÞ þ CdistðnÞ; ð21Þ

DgqcðnÞ ¼ Dgqcðn=2Þ þDqcðnÞ þDdistðnÞ; ð22Þ

where CdistðnÞ and DdistðnÞ are the corresponding costs for
the distribution stage. It is easy to verify that CdistðnÞ ¼ OðnÞ
because each copy node uses a constant number of gates,
and DdistðnÞ ¼ Oð1Þ. Thus, we have CgqcðnÞ ¼ Oðn log2 nÞ
and DgqcðnÞ ¼ Oðlog3 nÞ.

8 CONCLUSION AND FUTURE WORK

We have presented an n� n multistage quantum switching
network called quantum generalized connector (n-GQC)
that can realize quantum multicast assignments. The
quantum packets at each input consist of a number of
classical multicast packets in a probabilistic quantum super-
position. We showed that quantum assignments can be
expressed as superpositions of multicast assignment pat-
terns, where each assignment pattern is a sequence of
classical packets across the inputs of the network. All the
assignment patterns are simultaneously realized by the
n-GQC due to quantum parallelism. All the packets in a
noncontending assignment pattern are routed to their
desired outputs. However, the n-GQC is not work-conser-
ving when the input assignment pattern is contending and it
realizes a subpattern of such an assignment pattern due to
internal blocking.

The main motivation behind the design of n-GQC is that
it has inherent quantum parallelism that provides high
throughput by definition, while the packets are en route to
their destinations. To give an example, consider unicast
assignments, which are a subset of multicast traffic. Unicast
switches with nearly 100 percent throughput have been
reported in the literature [25], [26], but such switches
require complex scheduling algorithms. To avoid using
such algorithms, one can potentially employ a multilayer
switch to route a fixed number of packets from the head of
each input queue and an n-GQC would be a natural
replacement for such a switch in the quantum domain.

When routing a noncontending quantum assignment in
which different assignment patterns contain packets ad-
dressed to same outputs, the n-GQC realizes all the assign-
ment patterns in parallel and creates a superposition of all of
these packets at those outputs. Although a computational
basis measurement collapses the output state to one of the
patterns at the outputs, a better measurement scheme can be
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used to possibly increase the throughput. An investigation
of such measurement techniques will be deferred to another
place.

In this paper, we have mainly focused on multicasting
classical data using the n-GQC. However, the n-GQC can
potentially be extended to multicast arbitrary quantum
states. Even though the no-cloning theorem makes such an
operation impossible, approximate quantum multicasting is
possible due to the recent advances in quantum copying. By
using advanced quantum copiers such as Bu�zek and
Hillery’s universal quantum copying machine [19], [27] in
the distribution stages of n-GQC, this network can be used
for approximate multicasting of arbitrary quantum states.
However, as in the case of quantum copying, there is going
to be a trade-off between the amount of entanglement in the
output copies and the quality of multicasting. It would be
interesting to study how well the n-GQC can multicast
arbitrary quantum states and how the parameters of copy
nodes affect the above-mentioned trade-off.

The n-GQC can be used to unicast arbitrary quantum
states between its n inputs and outputs provided that there
is no output contention among the input quantum states.
This is due the fact that no copying would be needed at any
of the distribution stages. In the course of designing the
n-GQC, we have also designed an n-quantum concentrator
that can route arbitrary quantum states on any m of its
inputs to the top m outputs. This network can potentially be
used in other applications as well, apart from its critical role
in the n-GQC.
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